Serine 68 phosphorylation of phospholemman: acute isoform-specific activation of cardiac Na/K ATPase.
نویسندگان
چکیده
OBJECTIVE The mechanism by which the cardiac Na/K ATPase (NKA) is regulated by phosphorylation is controversial. We have used the perforated-patch technique to limit cell dialysis and maintain conditions as near physiological as possible. METHODS NKA pump current (I(p)) was measured in isolated guinea pig ventricular myocytes, and its components (I(alpha 1) and I(alpha 2)) defined by their differing dihydroouabain sensitivities. RESULTS Treatment with 1 micromol/l forskolin for 4 min at 35 degrees C caused a significant increase in I(alpha1) of 36+/-15% (P<0.05, n=6), but no change in I(alpha2). The presence of the PKA selective inhibitor H89 (50 micromol/l) throughout the protocol blocked the effect of the forskolin on I(alpha1). Treatment with H89 alone did not change I(alpha 1) or I(alpha 2). Isoelectric focusing gels of the NKA alpha1 subunit demonstrated six charge states, which were unaltered following treatment with forskolin. Western blots using an antibody specific for the PKA phosphorylation consensus site on the alpha1 subunit showed no change in the phosphorylation status of this residue following forskolin treatment. The sarcolemmal protein phospholemman (PLM) was found associated with NKA alpha 1 but not alpha 2 subunits by immunoprecipitation and immunofluorescence. PLM was phosphorylated at serine 68, but not 63, following treatment with forskolin. CONCLUSIONS PKA-dependent, alpha 1-specific NKA activation may be mediated through phosphorylation of the accessory protein PLM, rather than direct alpha1 subunit phosphorylation.
منابع مشابه
Phospholemman and the cardiac sodium pump: protein kinase C, take a bow.
In excitable tissues, the activity of the plasmalemmal sodium/potassium ATPase (Na/K pump) is vital for the maintenance of normal electrical activity and ion gradients. In cardiac muscle, the transsarcolemmal sodium (Na) gradient established by the Na/K activity is essential not only for generating the rapid upstroke of the action potential but also for driving a number of ion exchange and tran...
متن کاملO-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells
Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...
متن کاملHypertrophy, increased ejection fraction, and reduced Na-K-ATPase activity in phospholemman-deficient mice.
Phospholemman (FXYD1), a 72-amino acid transmembrane protein abundantly expressed in the heart and skeletal muscle, is a major substrate for phosphorylation in the cardiomyocyte sarcolemma. Biochemical, cellular, and electrophysiological studies have suggested a number of possible roles for this protein, including ion channel modulator, taurine-release channel, Na(+)/Ca(2+) exchanger modulator,...
متن کاملPhospholemman phosphorylation alters its fluorescence resonance energy transfer with the Na/K-ATPase pump.
Phospholemman (PLM) or FXYD1 is a major cardiac myocyte phosphorylation target upon adrenergic stimulation. Prior immunoprecipitation and functional studies suggest that phospholemman associates with the Na/K-pump (NKA) and mediates adrenergic Na/K-pump regulation. Here, we tested whether the NKA-PLM interaction is close enough to allow fluorescence resonance energy transfer (FRET) between cyan...
متن کاملPhospholemman: a novel cardiac stress protein.
Phospholemman (PLM), a member of the FXYD family of regulators of ion transport, is a major sarcolemmal substrate for protein kinases A and C in cardiac and skeletal muscle. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. Functionally, when phosphorylated at serine(68), PLM stimulates Na(+)-K(+)-ATPase but inhib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cardiovascular research
دوره 65 1 شماره
صفحات -
تاریخ انتشار 2005